
BPE
BUSINESS PROCESSING

FOR ENTERPRISE

DONE RIGHT

BPE: Business Processing
for Enterprise
Done Right

FIRST EDITION

Book Design and Illustrations by Maxim Sokhatsky
Author Maxim Sokhatsky

Editors: Stanislav Spivakov
Viktor Sovietov

Publisher imprint:
Toliman LLC
251 Harvard st. suite 11, Brookline, MA 02446
1.617.274.0635

Printed in Ukraine

Order a copy with worldwide delivery:
https://balovstvo.me/bpe

ISBN: 978-1-62540-052-9

c© 2015 Toliman
c© 2015 Synrc Research Center

Contents

1 TPS: Financial Processing 6
1.1 Data Locality Cache Ring 6
1.2 Riak . 6
1.3 Transactions Rate Calculation 7
1.4 Financial Warehouse Operations 7
1.5 Cache Operations . 7
1.6 Maintenance Operations 8
1.7 Database Schema . 8

2 BPE: Business Processes 9
2.1 Pi-calculus and Petri nets 11
2.2 Finite State Machines . 11
2.3 SADT . 11
2.4 Reactive Systems . 12
2.5 Typing Pi-calculus . 12
2.6 Scenarios . 13
2.7 Actions . 14
2.8 BPMN 2.0 . 15
2.9 Erlang Session . 17

3 FORMS: User Applications 19
3.1 Overview . 19
3.2 Metainformation . 19
3.3 Application . 19
3.4 Documents . 20
3.5 Sections . 20
3.6 Buttons . 20
3.7 Fields . 21
3.8 Validation . 21
3.9 Domain Model . 21
3.10 FORMS DSL . 22
3.11 N2O DSL . 23
3.12 Fields . 24
3.13 Validation Rules . 24
3.14 Form Autogeneration 24

3

4 UPL: Universal Processing Language 25
4.1 History . 25
4.2 Objectives . 26
4.3 Operations . 26
4.4 Programs . 27
4.5 Language Forms . 28
4.6 Accounts . 28
4.7 External Services . 29
4.8 Transactions . 29
4.9 Deposit . 29
4.10 Credit . 30

To all office workers and rest sentient beings.

1 TPS: Financial Processing

The TPS is an transactional database application that provides dis-
tributed, fault tolerant, network-split resistant, performant, transac-
tional intermediary processing. It also guarantees data locality for
storing customer objects which allows TPS to be easily scalable and
maintainable. TPS is supported following backends:

1 sql transactional processing;
2 riak kv application;
3 mnesia application;

TPS is based on KVS and CR. Rules for TPS are to be defined using
UPL language.

1.1 Data Locality Cache Ring

All customers of bank are being grouped or sharded using custom
hash function that is known to be linear and consistent. This function
allows TPS to store all customer information for a given master of its
key on a single node. Thus all TPS operations on transactions, cards,
account of a given customer are passed to a hash function with a same
customer ID key. In TPS all properties of a top customer object with
the same key are stored in the same VNODE.

1.2 Riak

All interface operations and application data are stored and being read
from Riak TPS Ring, which is in fact Riak Core application. Each
VNODE should be treated as Bank department or isolated Bank part
which could be detached to other place or Data Center. Each Riak
Core VNODE TPS application also has access to its SQL warehouse,
the primary source of transactions.

6

1.3 Transactions Rate Calculation

Here we define the formula of expected Transactions per month, that
is the source for all system configuration. Here is example:
The operational data is fixed. E.g. we have 30M customers. Consider
each customer performs 10 transactions in a month, thus we have
300M transaction. Each transaction has 2K in its size. So wee
need 600G space of a cluster in a month. After each month we
could outsource this data or even reduce it by cutting the tails of
transactions list. Also these 600G can be divided by the number of
nodes with accuracy to a coefficient of replication for TPS Ring. For
SQL warehouse we double its size for SQL warm stand by failover.
Also the number of VNODEs in TPS Ring is exactly the number of
failover SQL instances.

1.4 Financial Warehouse Operations

CHARGE unconditional INSERT and head UPDATE
inside TRANSACTION, Cache Write-Back

WITHDRAW conditional INSERT, based on last known
amount of latest customer transaction,
and chain root UPDATE inside TRANSACTION,
Cache Write-Back

All SQL Operations also perform write backs to TPS Cache, which is
backed by Riak.

1.5 Cache Operations

— Retrieval Transactions for an Account
— Display Accounts for a Customer
— Display list of Cards for a Customer
— Retrieval of details of an TPS object

7

1.6 Maintenance Operations

— Cutting Tails in Transactions list
— Perform Recalculation of UPL rule for a Time Range
— Adding/Removing Nodes

1.7 Database Schema

— customer: basic bank client profile
— account: IBAN identified bank account
— card: EMV issued card
— transaction: tracking record for beneficiary and subsidiary
— cashback: dfferent programs for credit transactions
— program: UPL encoded deposit or credit program

8

2 BPE: Business Processes

What is BPE? BPE is an production grade business workflow engine
that is enought for managing automated procesess. It can substitute
WWF, BizTalk, Activity or Oracle BPM for those who understand
the basic features of workflow systems. BPE is an subset of BPMN
2.0 standart, the evelution and unification of most previous worflow
standard such as XPDL, BPML, OpenWFE, WWF and jBPM.

Figure 1: Process Sample

This project was written essentially for biggest ukrainian commer-
cial bank and is based on previous research work already done by
athor for CLR platform. You may read a dedicated book about
Workflow Process theory written by BPE author earlier while this book
is dedicated essentially to BPE application and its companion libraries.
The same way as web frameworks are the core of web applications, the
workflow engine is a core of business applications.

In its core BPE is microkernel that accept native Erlang record-based
process definition in Erlang language along with Event-Condition-Action
erlang functions, similar you may find in OTP principles, but much

9

simplified, intended for business analytics and system integration
engineers. It acts like FSM machine, runned under Erlang supervision
and is totally persisted, which means no data loss can be happened. It
has very clean and minimalistic API for keeping this product robust
and stable, th approach you already can find in Synrc stack in common
and in N2O framework in particular.

BPE context holds KVS documents which in fact typed Erlang
records and are defined by KVS schema. Each process has its own
persistent execution log and is fully fault-resistant with migration
capabilities. The BPE protocol is well defined and is a part of N2O
protocols stack.

The author of BPE has implemented business workflow engine for
CLR virtual machine using C# language. However Erlang implemen-
tation more idiomatic and canonical due to semantic corresponding of
process calculus and the core of underlying virtual machine. Send
async messages across processes means exactly what it says up to
Erlang pids. For sending documents to business process you can use
process’s name or its Pid:

1> bpe:amend(Process#process.id,#deposit{}).

Thanks to this isomorphic corresponding between Erlang process
and Calculus process, code size of core BPE server was reduced to 400
lines of code. This is definitely most clean functional implementation
of workflow engine avalible in electronical banking systems.

10

2.1 Pi-calculus and Petri nets

The nice thing about all palette of different implementation of work-
flow models is that all of them reduced to one of two kinds of
encoding: one is algebraic one and the other is geometric.

The geometric one is Petri nets. Carl Petri introduced it in 1962
during discrete analysis of asynchronous computer systems. Any its
graphical representation could be defined with Petri nets formalism.
Petri modeling in one of its forms is a good complementation to
process algebra useful as computational model.

The algebraic one is Pi-calculus developed by Robin Milner who
gained Turing award for 1) Meta Language ML, 2) Calculus for
Communication Systems CCS (1980), the general theory of concur-
rency and 3) theoretical base for proof assistants, Logic for Com-
putable Functions LCF. The model of process calculus is a theoretical
background of virtual environment of Erlang infrastructure, so BPE
implementation fully relies on Pi-calculus (1999), the successor of CCS
notion. Thus providing effective computational model for implemen-
tation of workflow process management.

2.2 Finite State Machines

One of the common known types of encoding process calculus is
well developed FSM framework (60-s). This language is widely used
almost in any programming language presented as core feature or as
library. The process defines with an extension to Turing machine with
states, input, outputs and functions.

2.3 SADT

The next language (framework) that used in (80-s, 90-s) to describe
similar to process calculus definitions with graphical Petri nets and
model definitions was SADT introduced by Marca and MacGowan
1988, 1991.

11

2.4 Reactive Systems

One of the wide range of semantics is Reactive Systems based on
message passing and event routing, but also it could be known as
Functional Reactive Programming FRP which is rather a set of com-
binators over streams. Both interpretations are used in languages and
frameworks, depending on involvement of stream in core definition
(2010-s).

2.5 Typing Pi-calculus

In typed theory Pi-calculus defines also the typing system (could
be System F, e.g.) for input and outputs of processes or function
signatures specified in process definition. In BPE the role of types was
taken by document types, which is simple Erlang records, so in BPE
workflow processing is type-safe on compilation stage with respect to
document types.

1> #deposit{} = bpe:doc(#deposit{}, pid(0,185,0)).

12

2.6 Scenarios

Workflows are complimentary to business rules and could be specified
separately. BPE definitions provides front API to the end-user applica-
tion. Workflow Engine – is an Erlang/OTP application which handles
process definitions, process instances, and provides very clean API for
Workplaces.

Before using Process Engine you need to define the set of business
process workflows of your enterprise. This could be done via Erlang
terms or some DSL that lately converted to Erlang terms. Internally
BPE uses Erlang terms workflow definition:

bpe:start(#process{name="Order1",
flows=[#sequenceFlow{source=’Start’,target=’Mid’},

#sequenceFlow{source=’Mid’,target=’Finish’}],
tasks=[#userTask{name=’Start’},

#userTask{name=’Mid’},
#userTask{name=’Finish’}],

beginEvent=’Start’,endEvent=’Finish’},[]).

13

Slightly bigger example:

deposit_app() -> #process { name = ’Create Deposit Account’,

flows = [
#sequenceFlow{source=’Init’, target=’Payment’},
#sequenceFlow{source=’Payment’, target=’Signatory’},
#sequenceFlow{source=’Payment’, target=’Process’},
#sequenceFlow{source=’Process’, target=’Final’},
#sequenceFlow{source=’Signatory’, target=’Process’},
#sequenceFlow{source=’Signatory’, target=’Finish’}

],

tasks = [
#userTask { name=’Init’, module = deposit },
#userTask { name=’Signatory’, module = deposit},
#serviceTask { name=’Payment’, module = deposit},
#serviceTask { name=’Process’, module = deposit},
#endEvent { name=’Finish’}

],

beginEvent = ’Init’,
endEvent = ’Final’,
events = [

#messageEvent{name="PaymentReceived"}
]

}.

2.7 Actions

Business rules should be specified by developers. RETE is used for
rules specifications which can be triggered during workflow.

14

2.8 BPMN 2.0

The workflow definition uses following persistent workflow model
which is stored in KVS:

-record(task, { name, id, roles, module }).
-record(userTask, { name, id, roles, module }).
-record(serviceTask, { name, id, roles, module }).
-record(messageEvent, { name, id, payload }).
-record(beginEvent , { name, id }).
-record(endEvent, { name, id }).
-record(sequenceFlow, { name, id, source, target }).
-record(history, { ?ITERATOR(feed,true), name, task }).
-record(process, { ?ITERATOR(feed,true), name,

roles=[], tasks=[], events=[],
history=[], flows=[], rules,
docs=[], task, beginEvent,
endEvent }).

Full set of BPMN 2.0 fields could be obtained at OMG definition
document, page 3-71.
Unusual that BPE process implemented as gen server rather that
gen fsm:

Listing 1: Boundary Event
process_event(Event, Proc) ->

Targets = bpe_task:targets(element(#event.name,Event),Proc),
{Status,{Reason,Target},ProcState} =
bpe_event:handle_event(Event,

bpe_task:find_flow(Targets),Proc),
NewState = ProcState#process{task = Target},
FlowReply = fix_reply({Status,{Reason,Target},NewState}),
kvs:put(NewState),
FlowReply.

1http://www.omg.org/spec/BPMN/2.0

15

Listing 2: Flow Processing
process_flow(Proc) ->
Curr = Proc#process.task,
Term = [],
Task = bpe:task(Curr,Proc),
Targets = bpe_task:targets(Curr,Proc),
{Status,{Reason,Target},ProcState}

= case {Targets,Proc#process.task} of
{[],Term} -> bpe_task:already_finished(Proc);
{[],Curr} -> bpe_task:handle_task(Task,Curr,Curr,Proc);
{[],_} -> bpe_task:denied_flow(Curr,Proc);
{List,_} -> bpe_task:handle_task(Task,Curr,

bpe_task:find_flow(List),Proc) end,

kvs:add(#history{ id = kvs:next_id("history",1),
feed_id = {history,ProcState#process.id},
name = ProcState#process.name,
task = {task, Curr} }),

NewState = ProcState#process{task = Target},
FlowReply = fix_reply({Status,{Reason,Target},NewState}),
kvs:put(NewState),
FlowReply.

Listing 3: BPE protocol
{run}
{until,_}
{complete}
{complete,_}
{amend,_}
{amend,_,_}
{event,_}

16

2.9 Erlang Session

> bpe:start(spawnproc:def(),[]).
bpe_proc:Process 18 spawned <0.961.0>
{ok,18}

> bpe:complete(18).
ACT Deposit Init
bpe_proc:Process 18 Task: ’Init’ Targets: [’Payment’]
bpe_proc:Process 18 Flow Reply {reply,{complete,’Payment’}}
{complete,’Payment’}

> bpe:complete(18).
ACT Deposit Payment
bpe_proc:Process 18 Task: ’Payment’ Targets: [’Signatory’,’Process’]
bpe_proc:Process 18 Flow Reply {reply,{complete,’Signatory’}}
{complete,’Signatory’}

> bpe:complete(18).
bpe_proc:Process 18 Task: ’Signatory’ Targets: [’Process’,’Final’]
bpe_proc:Process 18 Flow Reply {reply,{complete,’Process’}}
{complete,’Process’}

> bpe:complete(18).
ACT Deposit Process
bpe_proc:Process 18 Task: ’Process’ Targets: [’Final’]
ACT Create Account {user,18,[],feed,[],[],[],[],

true,[],[],[],[],
[],[],[],[],[],[],
[],[],[],[],[],[]}

bpe_proc:Process 18 Flow Reply {reply,{complete,’Final’}}
{complete,’Final’}

> bpe:complete(18).
bpe_proc:Process 18 Task: ’Final’ Targets: []
bpe_proc:Process 18 Flow Reply {stop,{normal,’Final’}}
’Final’
bpe_proc:Terminating session Id cache: 18
Reason: normal

17

Take last two from history

> bpe:history(18,2).
[#history{id = 9,version = undefined,container = feed,

feed_id = {history,18},
prev = 8,next = 10,feeds = [],guard = true,etc = undefined,
name = ’Create Deposit Account’,
task = {task,’Process’},
time = {{2016,8,16},{20,19,39}}},

#history{id = 10,version = undefined,container = feed,
feed_id = {history,18},
prev = 9,next = undefined,feeds = [],guard = true,
etc = undefined,name = ’Create Deposit Account’,
task = {task,’Final’},
time = {{2016,8,16},{20,20,0}}}]

Load terminated process and try to spawn

> bpe:start(bpe:load(18),[]).
bpe_proc:Process 18 spawned <0.1008.0>
{ok,18}

> bpe:complete(18).
bpe_proc:Process 18 Task: ’Final’ Targets: []
bpe_proc:Process 18 Flow Reply {stop,{normal,’Final’}}
bpe_proc:Terminating session Id cache: 18
Reason: normal
’Final’

18

3 FORMS: User Applications

FORMS application provides set of CSS stylesheets for compact forms
definitions and also it provides database model for storing metadata
information about documents, fields and validations.

3.1 Overview

The basic idea that stands behind form models is that N2O forms are
able to be generated from its metamodel which is also a root for other
generated persisted Erlang records for KVS storage. N2O book is the
best for the taxonomy of N2O forms and KVS interface. This kind of
metainterpretation and unification of containers is usual for enterprise
and common object oriented systems.

3.2 Metainformation

Metainformation declares the documents (#document) and its fields
(#field) which forms a document level entity that can be stored in
database. Usually somewhere in ACT or in DBS applications you can
find its document definition in Erlang records which is entered with
forms.

3.3 Application

JavaScript Web Application is generated using Metainformation and
Data Model. N2O is used as DSL language for forms generation.
JavaScript/OTP is also used for forms generation. Forms average
render speed is 50 FPS (forms per second).

19

3.4 Documents

The #document object is an application form definition. It consists of
sections (#sec) that include fields with its descriptions and validations.

-record(document, { ?ITERATOR(feed),
name,
base,
sections,
fields,
buttons,
access }).

3.5 Sections

Each section #sec of forms are entitled with heading font.

-record(sec, { id, name, desc="" }).

3.6 Buttons

Forms are given with its control buttons (#but). The information from
field postback in button is directly translated to N2O element postback
during forms:new/2.

-record(but, { id, postback, name, title,
sources=[], class }).

20

3.7 Fields

-record(opt, { id, name, title, postback,
checked=false, disabled=false,
noRadioButton=false }).

-record(sel, { id, name, title, postback }).

-record(field, { id, sec=1, name, pos, title,
layout, visible=true,
disabled=false, format="˜w",
curr="", postfun=[], desc,
wide=normal, type=binary,
etc, labelClass=label,
fieldClass=field,
boxClass=box,
access, tooltips=[],
options=[], min=0, max=1000000,
length=10, postback }).

3.8 Validation

Since document consists of validations and fields, here is their record
definitions in FORMS model:

-record(validation, { name, type, msg,
extract = fun(X) -> X end,
options=[], function,
field={record,pos} }).

3.9 Domain Model

KVS Data Model is being generated from its metainformation. KVS
layer provide persistence facilities. Buy you can defined your docu-
ment ad-hoc by declaring good known Erlang record.

-record(phone, { ?ITERATOR(feed),
number = "+380676631870" }).

21

3.10 FORMS DSL

Document encoding

document(Name,Phone) -> #document { name = Name,

sections = [
#sec { name=[<<"Input the password "

"you have received by SMS"/utf8>>,
wf:to_list(Phone#phone.number)] }],

buttons = [#but { name=’decline’,
title=<<"Cancel"/utf8>>,
class=cancel,
postback={’CloseOpenedForm’,Name} },

#but { name=’proceed’,
title = <<"Proceed"/utf8>>,
class = [button,sgreen],
sources = [otp],
postback = {’Spinner’,{’OpenForm’,Name}}}],

fields = [#field { name=’otp’,
type=otp,
title= <<"Password:"/utf8>>,
labelClass=label,
fieldClass=column3}]}.

22

3.11 N2O DSL

The above form is being automatically rendered to N2O forms which
can be later rendered to XML, HTML, Windows or Cocoa code.

form(Name,Phone) ->

#panel{id=deposits:atom([form,Name]),class=line,body=[
#panel{id=form,class=form,body=[

#panel{class=caption,body=[
#h4{body= <<"Input the password "

"you have received by SMS"/utf8>>},
#h3{body= Phone#phone.number}]},

#panel{class=row,body=[
#panel{class=label,body= <<"Password:"/utf8>>},
#panel{class=field,body=

#input{id=otp,onkeypress="searchKeyPress(event);"}}]},

#panel{class=buttons,body=[
#link{class=decline,

postback={’CloseOpenedForm’,Name},
body= <<"Cancel"/utf8>>},

#link{id=proceed,
source=[otp],
postback={’OpenForm’,Name},
class= [button,sgreen],
body= <<"Proceed"/utf8>>}]}]}]}.

Figure 2: OTP Form Sample

23

3.12 Fields

3.13 Validation Rules

Validation rules should be applied by developer. Erlang and JavaScrip-
t/OTP is used to define validation rules applied to documents during
workflow.

3.14 Form Autogeneration

XForms and XMPP Data Forms

The other well known standard is XForms that could be easily con-
verted to both directions by FORMS application. XForms W3C
standard strives to be supported by browsers. The other XML forms
standard is XEP-0004 Data Forms which is supported by most XMPP
clients:

<x xmlns=’jabber:x:data’ type=’{form-type}’>
<title/>
<instructions/>
<desc/>
<field var=’OS’ type=’int’ label=’description’>

<value>3</value>
<option label=’Windows’><value>3</value></option>
<option label=’Mac’> <value>2</value></option>
<option label=’Linux’> <value>1</value></option>

</field>
</x>

24

4 UPL: Universal Processing Language

4.1 History

Pocessing systems are using manually crafted application relays to
handle card processing business rules. Being defined by business
analysts these rules are fallen down to engineering teams informally.
Approach we provide pushes card processing to solid background in a
form of domain specific language common for all card plans analytics
departments.
Having compact language we can formally build various translators
for particular customers and existing processing systems. At the same
time we provide reference back-end Erlang system implementation
for transactions processing. Also DSL gives us a natural and easy
verification strategies and compactifications.

Listing 4: Deposit Program
program Deposit_Plus UAH
include ’PB-CASHBACK’
deposit duration range monthly 1 -> 20%

monthly 3 -> 22%
monthly 6 -> 22%
annual 23%

withdraw disabled
auto
charge enabled monthly limit max 20000
monthly 1% of amount to account ’bonus’
monthly 15% name ’tax’ of deposit

to account ’users/:client/tax’

This language could be easily extended to other domain areas like
internet payment processing, shopping mall bonus programs, mobile
operators tariff plans.

25

4.2 Objectives

The aim is to create small and compact language for payment trans-
action processing. Underlying instrumentation code should be KVS
layer for storing transaction chains but naturally should be extended
to different backends like Java, PL/SQL and other languages currently
involved in banking card processing. We have several criteria to
satisfy:

English Self-explanatory
Fasten Time-to-market
Optimized Minimal Back-end Operations
Verified No regular bugs. Only business logic.
Taxonomy Sane structure for extensions

4.3 Operations

User Creation:

prepare user ’:client’
name ’:fullname’
age ’:birth’
phone ’:ph’
document ’:passport’
accounts

credit ’/users/:client/credit’ program ’PB-UNIVERSAL’
account ’/users/:client/:acc’ program ’:tariff’

Process Transaction:

prepare transaction from account ’users/:client’
to account ’:beneficiar’

Notifying:

prepare event ’users/:client’

26

4.4 Programs

Programs are tariff programs, set of rules that we plug to transaction
processing. It feels like set of filters triggered each time we fire money
movements on account with a given card defenition.

Listing 5: BNF

Program = program Name Currency Forms

Form = limit Amount
| grace Amount days
| credit CreditRules
| rate ChargeRule
| version Amount
| deposit DepositRules
| accounts AccountList

Example:

Listing 6: credit.card
program PLA_DEB USD
limit 20000
version 1.0
credit monthly 10%

Programs are stored in its own space.

/programs/PB-UNIVERSAL.card
/programs/PB-DEPOSIT-PLUS.card
/programs/API.code
/programs/UA.user

27

4.5 Language Forms

Top level tariffs of billing rules are pluggable slangs that share some
common part of the languages. These common part we will call
language forms.

Listing 7: BNF

Direction = charge
| withdraw

ChargeRule = Fixed + Percent
of <amount | debt | credit | deposit | rate>
limit <min Amount> | <max Amount>
name Name
to account Name

Periodically = monthly Amount
| monthly Months -> ChargeRule
| daily ChargeRule
| annual ChargeRule

Account = <credit | rate | deposit> Name

4.6 Accounts

Enterprise Tree handles clients, accounts, transactions, programs,
events. Programs could be assigned to each node and fires atomati-
cally on access.

/personal/:client
/personal/:client/bonus
/personal/:client/credit
/personal/:client/deposit
/personal/:client/rate

28

4.7 External Services

External service has its own endpoints, and could be addressed/-
mounted? to local system.

/external/visa/:client
/external/master/:client
/external/swift/:client
/internet/paypal/:client
/bonus/:client

4.8 Transactions

Transactions are stored per each client’s account.

/personal/:client/transactions

4.9 Deposit

Deposit program forms ususally provides such attributes of account
as duration, rate, withdraw locking, charge limits, fee options and
other deposit specific options. Deposit forms usually have ”deposit”
account name.

Enabled = enabled | disabled

Deposit = duration Periodically
| duration range [Periodically]
| withdraw Enabled
| charge Enabled | charge Enabled Periodically
| auto
| final Periodically move from Id to Id
| fee ChargeRule
| Periodically

29

4.10 Credit

Credit programs forms mainly provide transaction filtering and other
default account name ”credit”.

Credit = transaction [TransRule]
| sratus Enabled Ammount
| Periodically

TransRule = cashin Amount
| wire ChargeRule
| cashout Amount

30

