
N2O
NO BULLSHIT

SANE FRAMEWORK

FOR WILD WEB

N2O: No Bullshit
Sane Framework
For Wild Web

SECOND EDITION

Book Design and Illustrations by Maxim Sokhatsky
Author Maxim Sokhatsky

Editors: Anton Logvinenko
Vladimir Kirillov
Viktor Sovietov
Dmitriy Sukhomlynov

Publisher imprint:
Toliman LLC
251 Harvard st. suite 11, Brookline, MA 02446
1.617.274.0635

Printed in Ukraine

Order a copy with worldwide delivery:
https://balovstvo.me/n2o

ISBN — 978-1-62540-038-3

c© 2014 Toliman
c© 2013-2014 Synrc Research Center

Contents

1 N2O: Application Server 9
1.1 Wide Coverage . 9
1.2 Rich and Lightweight Applications 11
1.3 JSON and BERT . 12
1.4 DSL and Templates . 12

2 Setup 15
2.1 Prerequisites . 15
2.2 Kickstart Bootstrap . 15
2.3 Application Template 16
2.4 Companion Dependencies 17
2.5 Configuration . 18

3 Erlang Processes 21
3.1 Reduced Latency . 21
3.2 Page Serving Process . 22
3.3 Transition Process . 22
3.4 Events Process . 23
3.5 Async Processes . 23
3.6 SPA Mode . 24

4 Endpoints 25
4.1 HTML Pages over HTTP 25
4.2 JavaScript Events over WebSocket 26
4.3 HTTP API over REST 27

5 Handlers 28
5.1 Query . 28
5.2 Session . 28
5.3 Router . 29

6 Protocols 30
6.1 HEART . 35
6.2 NITRO . 37
6.3 SPA . 39
6.4 BIN . 40

3

7 API 41
7.1 Update DOM wf:update 41
7.2 Wire JavaScript wf:wire 43
7.3 Message Bus wf:reg and wf:send 45
7.4 Async Processes wf:async and wf:flush 46
7.5 Parse URL and Context parameters wf:q and wf:qp . . 48
7.6 Render wf:render or nitro:render 49
7.7 Redirects wf:redirect . 51
7.8 Session Information wf:session 51
7.9 Bridge information wf:header and wf:cookie 52

8 Elements 53
8.1 Static Elements: HTML 53
8.2 Active Elements: HTML and JavaScript 54
8.3 Base Element . 55
8.4 DTL Template #dtl . 56
8.5 Button #button . 57
8.6 Link #dropdown . 57
8.7 Link #link . 59
8.8 Text Editor #textarea . 59

9 Actions 60
9.1 JavaScript DSL #jq . 60
9.2 Page Events #event . 61
9.3 API Events #api . 61
9.4 Message Box #alert . 62
9.5 Confirmation Box #confirm 62

10 JavaScript Compiler 63
10.1 Compilation and Macros 63
10.2 Erlang Macro Functions 63
10.3 JavaScript File Compilation 64
10.4 Mapping Erlang/OTP to JavaScript/OTP 65

11 UTF-8 66
11.1 Erlang . 66
11.2 JavaScript . 66

4

12 MAD: Build and Packaging Tool 67
12.1 History . 67
12.2 Introduction . 68
12.3 Single-File Bundling . 68
12.4 Templates . 69
12.5 Deploy . 69
12.6 OTP Compliant . 70
12.7 Apps Ordering . 70

13 KVS: Abstract Erlang Database 71
13.1 Polymorphic Records 71
13.2 Iterators . 72
13.3 Containers . 73
13.4 Extending Schema . 73
13.5 KVS API . 74
13.6 Service . 74
13.7 Schema Change . 74
13.8 Meta Info . 74
13.9 Chain Ops . 75
13.10 Raw Ops . 75
13.11 Read Ops . 75
13.12 Import/Export . 76

14 History 77

15 Afterword 81

6

To Mary and all sentient beings.

1 N2O: Application Server

N2O was started as the first Erlang Web Framework that uses Web-
Socket protocol only. We saved great compatibility with Nitrogen and
added many improvements, such as binary page construction, binary
data transfer, minimized process spawns, transmission of all events
over the WebSocket and work within Cowboy processes. N2O renders
pages several times faster than Nitrogen.

1.1 Wide Coverage

N2O is unusual in that it solves problems in different web develop-
ment domains and stays small and concise at the same time. Started
as a Nitrogen concept of server-side framework it can also build
offline client-side applications using the same source code. This
became possible with powerful Erlang JavaScript Parse Transform
which enables running Erlang on JavaScript platform and brings in
Erlang and JavaScript interoperability. You can use Elixir, LFE and
Joxa languages for backend development as well.

N2O supports DSL and HTML templates. It lets you build JavaScript
control elements in Erlang and perform inline rendering with DSL
using the same code base for both client and server-side. How to use
N2O is up to you. You can build mobile applications using server-side
rendering for both HTML and JavaScript thus reducing CPU cycles
and saving the battery of a mobile device. Or you can create rich
offline desktop applications using Erlang JavaScript compiler.

9

Why Erlang in Web?

We have benchmarked all the existing modern web frameworks that
were built using functional languages and Cowboy was still the
winner. The chart below shows raw HTTP performance of functional
and C-based languages with concurrent primitives (Go, D and Rust)
on a VAIO Z notebook with i7640M processor.

Figure 1: Web-Servers raw performance grand congregation

Erlang was built for low latency streaming of binary data in telecom
systems. It’s fundamental design goal included high manageability,
scalability and extreme concurrency. Thinking of WebSocket channels
as binary telecom streams and web pages as user binary sessions helps
to get an understanding reasons behind choosing Erlang over other
alternatives for web development.

Using Erlang for web allows you to unleash the full power of tele-
com systems for building web-scale, event-driven, message-passing,

10

NoSQL, asynchronous, non-blocking, reliable, highly-available, per-
formant, secure, real-time, distributed applications. See Erlang: The
Movie II.

N2O outperforms full Nitrogen stack with only 2X raw HTTP Cow-
boy performance downgrade thus upgrading rendering performance
several times compared to any other functional web framework. And
sure it’s faster than raw HTTP performance of Node.js.

1.2 Rich and Lightweight Applications

There are two approaches for designing client/server communication.
The first one is called ’data-on-wire’. With this approach only JSON,
XML or binary data are transferred over RPC and REST channels.
All HTML rendering is performed on the client-side. This is the
most suitable approach for building desktop applications. Examples
include React, Meteor and ClojureScript. This approach can also be
used for building mobile clients.

Another approach is sending pre-rendered parts of pages and JS and
then replacing HTML and executing JavaScript on the client-side. This
approach is better suited for mobile web development since the client
doesn’t have much resources.

With N2O you can create both types of applications. You can use
N2O REST framework for desktop applications based on Cowboy
REST API along with DTL templates for initial HTML rendering for
mobile applications. You can also use Nitrogen DSL-based approach
for modeling parts of pages as widgets and control elements, thanks to
Nitrogen rich collection of elements provided by Nitrogen community.

In cases when your system is built around Erlang infrastructure,
N2O is the best choice for fast web prototyping, bringing simplicity
of use and clean codebase. Despite HTML being transfered over the
wire, you still have access to all your Erlang services directly.

11

You can also create offline applications using Erlang JavaScript
compiler just the way you would use ClojureScript, Scala.js, Elm,
WebSharper or any other similar tool. N2O includes: REST micro
frameworks, server-side and client-side rendering engines, WebSocket
events streaming, JavaScript generation and JavaScript macro system
along with AVZ authorization library (Facebook, Google, Twitter,
Github, Microsoft), key-value storages access library KVS and MQS
Message Bus client library (gproc, emqttd).

1.3 JSON and BERT

N2O uses JSON and BERT. All messages passed over WebSockets
are encoded in native Erlang External Term Format. It is easy to
parse it in JavaScript with dec(msg) and it helps to avoid complexity
on the server-side. Please refer to http://bert-rpc.org1 for detailed
information.

1.4 DSL and Templates

We like Nitrogen for the simple and elegant way it constructs typed
HTML with internal DSL. This is analogous to Scala Lift, OCaml
Ocsigen and Haskell Blaze approach. It lets you develop reusable
control elements and components in the host language.

Template-based approach (Yesod, ASP, PHP, JSP, Rails, Yaws and
ChicagoBoss) requires developers to deal with raw HTML. It allows
defining pages in terms of top-level controls, placeholders and panels.
N2O also support this approach by proving bindings to DTL and ET
template engines.

The main N2O advantage is its suitability for large-scale projects
without sacrificing simplicity and comfort of prototyping solutions in
fast and dynamic manner. Below is an example of complete Web Chat
implementation using WebSockets that shows how Templates, DSL
and asynchronous inter-process communication work in N2O.

1http://bert-rpc.org

12

Listing 1: chat.erl
-module(chat).
-include_lib("nitro/include/nitro.hrl").
-compile(export_all).

main() ->
#dtl { file = "login",

app = review,
bindings = [{ body, body() }] }.

body() ->
[#span { id=title, body="Your nickname: " },

#textbox { id=user, body="Anonymous" },
#panel { id=history },
#textbox { id=message },
#button { id=send, source=[user,message],

body="Send",
postback=chat }].

event(init) -> wf:reg(room), wf:async("looper",fun loop/1);
event(chat) -> User = wf:q(user),

Message = wf:q(message),
n2o_async:send("looper",{chat,User,Message}).

loop({chat,User,Message}) ->
Terms = #panel { body = [

#span { body = User }, ": ",
#span { body = Message }]},

wf:insert_bottom(history, Terms),
wf:flush(room).

Just try to build the similar functionality with your favorite lan-
guage/framework and feel the difference! Here are one message bus,
one async gen server worker under supervision, NITRO DSL, DTL
template, WebSockets, HTML and JavaScript generation in a simple
file that you can put in your N2O application directory tree without
restart and manual compilation. Also you can create single-file bundle
which is able to run in Windows, Linux and Mac. Moreover this
application is ready to run under multiplatform LING Erlang virtual
machine.

13

Changes from Nitrogen

We took a liberty to break some compatibility with the original
Nitrogen framework, mostly because we wanted to have a clean
codebase and achieve better performance. However, it’s still possible
to port Nitrogen web sites to N2O quite easily. E.g., N2O returns id
and class semantics of HTML and not html id. We simplified HTML
rendering without using html encode which should be handled by
application layer.

Nitrogen.js, originally created by Rusty Klophaus, was removed
because of the pure WebSocket nature of N2O which doesn’t require
jQuery on the client-side anymore. In terms of lines of code we have
impressive showing. New xhr.js 25 LOC and bullet.js 18 LOC was
added as the replacement, also nitrogen.js takes only 45 LOC. UTF-8
utf8.js 38 LOC could be plugged separately only when you’re using
bert.js 200 LOC formatter. n2o.js protocol handler is about 20 LOC.

We also removed simple bridge and optimized N2O on each level
to unlock maximum performance and simplicity. We hope you will
enjoy using N2O. We are fully convinced it is the most efficient way to
build Web applications in Erlang.

Original Nitrogen was already tested in production under high
load and we decided to remove nprocreg process registry along with
action comet heavy process creation. N2O creates a single process
for an async WebSocket handler, all operations are handled within
Cowboy processes.

Also, we introduced new levels of abstraction. You can extend
the set of available protocols (Nitrogen, Heartbeat, Binary), change
protocol formatters to BERT, JSON or MessagePack, inject your code
on almost any level. The code structure is clean and Nitrogen
compatibility layer NITRO is fully detachable from N2O and lives in
a separate synrc/nitro application.

14

2 Setup

2.1 Prerequisites

To run N2O websites you need to install Erlang version 18 or higher.
N2O works on Windows, Mac and Linux.

2.2 Kickstart Bootstrap

To try N2O you only need to fetch it from Github and build. We don’t
use fancy scripts, so building process is OTP compatible: bootstrap
site is bundled as an Erlang release.

$ git clone git://github.com/synrc/n2o
$ cd n2o/samples
$./mad deps compile plan repl

Now you can try: http://localhost:80002.
On Linux you should do at first:

$ sudo apt-get install inotify-tools

2http://localhost:8000

15

2.3 Application Template

If you want to start using N2O inside your application, you can use
Cowboy dispatch parameter for passing HTTP, REST, WebSocket and
Static N2O endpoints:

Listing 2: sample.erl

-module(sample).
-behaviour(supervisor).
-behaviour(application).
-export([init/1, start/2, stop/1, main/1]).

main(A) -> mad:main(A).
start(_,_) -> supervisor:start_link({local,review},review,[]).
stop(_) -> ok.
init([]) -> { ok, { { one_for_one, 5, 100 }, [spec()] } }.

spec() -> ranch:child_spec(http, 100, ranch_tcp, port(), cowboy_protocol, env()).
port() -> [{ port, wf:config(n2o,port,8000) }].
env() -> [{ env, [{ dispatch, points() }] }].
static() -> { dir, "apps/sample/priv/static", mime() }.
n2o() -> { dir, "deps/n2o/priv", mime() }.
mime() -> [{ mimetypes, cow_mimetypes, all }].
points() -> cowboy_router:compile([{’_’, [

{ "/static/[...]", n2o_static, static()},
{ "/n2o/[...]", n2o_static, n2o()},
{ "/ws/[...]", n2o_stream, []},
{ ’_’, n2o_cowboy, []}]}]).

16

While Listing 1 is a little bit criptic we want to say that N2O in-
tentionally not introduced here any syntax sugar. For any Erlang
application you need to create application and supervisor behavior
modules which we combined in the same Erlang file for simplicity.

Cowboy routing rules also leaved as is. We’d better to leave our
efforts for making N2O protocol and N2O internals simplier. Here
we can’t fix a much. Just use this as template for bootstrapping N2O
based applications.

2.4 Companion Dependencies

For raw N2O use with BERT message formatter you need only one
N2O dependecy, but if you want to use DTL templates, JSON message
formatter, SHEN JavaScript Compiler or NITRO Nitrogen DSL you
can plug all of them separately.

https://github.com/synrc/n2o 2.9
https://github.com/synrc/nitro 2.9
https://github.com/synrc/kvs 2.9
https://github.com/synrc/active 2.9
https://github.com/synrc/shen 1.5
https://github.com/synrc/rest 1.5
https://github.com/spawnproc/bpe 1.5
https://github.com/spawnproc/forms 1.5

17

2.5 Configuration

Listing 3: sys.config
[{n2o, [{port,8000},

{app,review},
{route,routes},
{mq,n2o_mq},
{json,jsone},
{log_modules,config},
{log_level,config},
{log_backend,n2o_log},
{session,n2o_session},
{origin,<<"*">>},
{bridge,n2o_cowboy},
{pickler,n2o_pickle},
{erroring,n2o_error}]},

{kvs, [{dba,store_mnesia},
{schema, [kvs_user,

kvs_acl,
kvs_feed,
kvs_subscription]}]}].

Ports

N2O uses two ports for WebSocket and HTTP connections.

wf:config(n2o,port,443)
wf:config(n2o,websocket_port,443)

If you use server pages mode N2O will render HTML with nessesary
ports values. For single page application mode you should redefine
these ports inside the template:

<script> var transition = { pid: ’’,
host: ’localhost’,
port: ’443’ }; </script>

18

Application

In app setting you should place the name of your OTP application that
will be treated by N2O and NITRO as a source for templates and other
static data with code:priv dir.

Routes

Setting route is a place for the name of Erlang module where resides
mappings from URL to page modules.

Logging

N2O supports logging API and you can plug different logging mod-
ule. It ships with n2o io and n2o log modules which you can set in
the log backend option. This is how logging looks like in N2O:

wf:info(index,"Message: ˜p",[Message]),

First argument is a module from which function is being called. By
using this N2O can filter all log messages with special filter settled
with log modules option. It says in which Erlang module function
log modules/0 exists that returns allowed Erlang modules to log.
Option log level which specified in a similar way, it specifies the
module with function log level/0 that could return one of none, error,
warning or info atom values which means different error log levels.

-module(config).
-compile(export_all).

log_level() -> info.
log_modules() -> [login, index].

19

Message Queue

In mq settings you should place the name of Erlang module which
supports message queue API. By default N2O provides n2o mq
module.

Formatter

With formatter option you may set the WebSocket channel termina-
tion formatter such as bert or json. If you will select json as formatter
you may want also to chose a json encoder in json option. By default
in n2o enabled json formatter and jsone encoder. The main reason is
that jsone is written in pure erlang idiomatic code and is ready to run
on LING without C NIF linkage. But you may want to switch to jsonx
on BEAM or whatever.

Minimal Page

And then add a minimal index.erl page:

Listing 4: index.erl
-module(index).
-compile(export_all).
-include_lib("nitro/include/nitro.hrl").

main() -> #span{body="Hello"}.

20

3 Erlang Processes

3.1 Reduced Latency

The secret to reducing latency is simple. We try to deliver rendered
HTML as soon as possible and render JavaScript only when Web-
Socket initialization is complete. It takes three steps and three Erlang
processes for doing that.

Figure 2: Page Lifetime

N2O request lifetime begins with the start of HTTP process serving
the first HTML page. After that it dies and spawns Transition
process. Then the browser initiates WebSocket connections to the
similar URL endpoint. N2O creates persistent WebSocket process and
the Transition process dies.

Your page could also spawn processes with wf:async. These are
persistent processes that act like regular Erlang processes. This is a
usual approach to organize non-blocking UI for file uploads and other
time consuming operations.

21

3.2 Page Serving Process

This processes are applicable only to the case when you serving not
static HTML, but dynamically rendered pages with NITRO, DTL or ET
template engines. The very first HTTP handler only renders HTML.
During page initialization function Module:main/0 is called. This
function should return raw HTML or NITRO elements that could be
rendered into raw HTML. All created on the way JavaScript actions
are stored in the transition process.

main() -> #dtl { file = "login",
app = review,
bindings = [{ body,

#button { id = send,
postback = chat } }] }.

HTTP handler will die immediately after returning HTML. Transi-
tion process stores actions and waits for a request from a WebSocket
handler.

3.3 Transition Process

Right after receiving HTML the browser initiates WebSocket connec-
tion thus starting WebSocket handler on the server. After responding
with JavaScript actions the Transition process dies and the only
process left running is WebSocket handler. At this point initialization
phase is complete.

transition(Actions) ->
receive {’N2O’,Pid} -> Pid ! Actions end.

Transition process is only applicable to dynamically rendered pages
served by n2o document endpoint. You never deal with it manually.

22

3.4 Events Process

After that all client/server communication is performed over Web-
Socket channel. All events coming from the browser are handled
by N2O, which renders elements to HTML and actions to JavaScript.
Each user at any time has only one WebSocket process per connection.

event(init) -> wf:reg(room);
event(chat) -> #insert_top(history,#span{body="message"}),

wf:flush(room).

This code will register all WebSocket processes under the same topic in
pubsub and broadcast history changing to all registered process in the
system under the same topic using #flush NITRO protocol message.

During page initialization before Module:event(init), Module:main/0
is called to render initial postbacks for elements. So you can share the
same code to use SPA or DSL/DTL approach.

3.5 Async Processes

These are user processes that were created with wf:async invocation.
This processes was very useful to organize persistent stateful connec-
tion for legacy async technology like COMET for XHR channel. If
you have problem with proxying WebSocket stream you can easily
use XHR fallback that is provided by xhr.js N2O companion library.
Async processes are optional and only needed when you have a UI
event taking too much time to be processed, like gigabyte file uploads.
You can create multiple async processes per user. Starting from N2O
2.9 all async processes are being created as gen server under n2o sup
supervision tree.

event(init) -> wf:reg(room),
wf:async("looper", fun async/1);

async(init) -> ok;
aynsc(Chat) -> io:format("Chat: ˜p˜n",[Chat]).

23

3.6 SPA Mode

In SPA mode N2O can serve no HTML at all. N2O elements are bound
during initialization handshake and thus can be used regularly as in
DSL mode.

In the example provided in n2o/samples you can find two different
front end to the same review application which consist of two page
modules index and login. You can access this application involving
no HTML rendering by using static file serving that could be switched
to direct nginx serving in production.

open http://localhost:8000/static/app/login.htm

Or you can see DTL rendered HTML pages which resides at following
address:

open http://localhost:8000/login.htm

24

4 Endpoints

N2O Erlang Processes are instantiated and run by Web Server. De-
pending on Web Server endpoint bindings you can specify module
for HTTP requests handling.

N2O comes with three endpoint handlers for each Web Server
supported. However you are not required to use any of these. You can
implement your own endpoint handlers, e.g. for using with Meteor.js
or Angular.js and providing Erlang back-end event streaming from
server-side. Here is an example of using HTTP, WebSocket and REST
endpoint handlers with Cowboy Web Server.

{"/rest/:resource", rest_cowboy, []},
{"/rest/:resource/:id", rest_cowboy, []},
{"/ws/[...]", n2o_stream, []},
{’_’, n2o_cowboy, []}

4.1 HTML Pages over HTTP

This handler is used for serving initial dynamic HTML page. In case
you are serving static HTML content this handler is not included into
the running stack. n2o cowboy is a default HTML page handler.

On initial page load n2o document:run of page document endpoint
is started. During its execution wf render:render proceeds by calling
Module:main selected by the routing handler.

25

4.2 JavaScript Events over WebSocket

JavaScript handler shares the same router information as the HTML
handler because during its initial phase the same chain of N2O
handlers is called.

This handler knows how to deal with XHR and WebSocket requests.
n2o stream is a default JavaScript event handler based on Bullet
library created by Loı̈c Hoguin, optimized and refined.

You can send several types of events directly from JavaScript using
various protocols. E.g. you may need to use client protocol:

JavaScript> ws.send(enc(tuple(atom(’client’),
tuple(atom(’phone_auth’),bin("+380..")))));

And catch this event at Erlang side:

event({client,{phone_auth,Phone}}) ->
io:format("Phone: ˜p˜n",[Phone]).

You can also send direct messages to event/1, but use it carefully
because it may violate security rules.

> ws.send(enc(tuple(atom(’direct’),atom(’init’))));

With catching at Erlang side:

event(init) -> io:format("Init called˜n").

26

4.3 HTTP API over REST

REST handler’s request context initialization differs for the one used
by HTML and JavaScript handlers. N2O handler chains are not
applied to REST requests. rest cowboy is a default REST handler.

{"/rest/:resource", rest_cowboy, []},
{"/rest/:resource/:id", rest_cowboy, []},

-module(users).
-behaviour(rest).
-compile({parse_transform, rest}).
-include("users.hrl").
-export(?REST_API).
-rest_record(user).

init() -> ets:new(users,
[public, named_table, {keypos, #user.id}]).

populate(Users) -> ets:insert(users, Users).
exists(Id) -> ets:member(users, wf:to_list(Id)).
get() -> ets:tab2list(users).
get(Id) -> [User] = ets:lookup(users, wf:to_list(Id)), User.
delete(Id) -> ets:delete(users, wf:to_list(Id)).
post(#user{} = User) -> ets:insert(users, User);
post(Data) -> post(from_json(Data, #user{})).

Listing 5: users.erl

To add users to in-memory storage perform POST requests:

curl -i -X POST -d "id=vlad" localhost:8000/rest/users
curl -i -X POST -d "id=doxtop" localhost:8000/rest/users
curl -i -X GET localhost:8000/rest/users
curl -i -X PUT -d "id=5HT" localhost:8000/rest/users/vlad
curl -i -X GET localhost:8000/rest/users/5HT
curl -i -X DELETE localhost:8000/rest/users/5HT

27

5 Handlers

HTML and JavaScript Web Server HTTP handlers share the same
system of context initialization.

init_context(Req) -> #cx{
actions=[], module=index, path=[],
req=Req, params=[], session=undefined,
handlers= [{’query’, wf:config(’query’, n2o_query)},

{session, wf:config(session, n2o_session)},
{route, wf:config(route, n2o_route)}]}.

Chain of three N2O handlers that are always called on each HTTP
request. You can redefine any of them or plug your own additional
handler in the chain to transform web server requests.

fold(Fun,Handlers,Ctx) ->
lists:foldl(fun({_,Module},Ctx1) ->

{ok,_,NewCtx} = Module:Fun([],Ctx1),
NewCtx end,Ctx,Handlers).

Listing 6: wf:fold/3

5.1 Query

Query Handler parses URL query and HTTP form information from
HTTP request.

5.2 Session

Session Handler manages key-value in-memory database ETS table.

28

5.3 Router

You can specify routing table with application config:

{n2o, [{route,n2o_route}]}

Remember that routing handler should be kept very simple because it
influences overall initial page load latency and HTTP capacity.

-module(n2o_route).
-include_lib("n2o/include/wf.hrl").
-export(?ROUTING_API).

finish(S, Cx) -> {ok, S, Cx}.
init(S, Cx) -> P = wf:path(Cx#context.req),

M = prefix(Path),
{ok, S, Cx#cx{path=P,module=M}}.

prefix(<<"/ws/",P/binary>>) -> route(P);
prefix(<<"/",P/binary>>) -> route(P);
prefix(P) -> route(P).

route(<<>>) -> index;
route(<<"index">>) -> index;
route(<<"login">>) -> login;
route(<<"favicon.ico">>) -> index;
route(_) -> index.

29

6 Protocols

N2O is more that just web framework or even application server. It
also has protocol specification that covers broad range of application
domains. In this chapter we go deep inside network capabilities
of N2O communications. N2O protocol also has an ASN.1 formal
description, however here we will speak on it freely. Here is the
landscape of N2O protocols stack.

Figure 3: Protocols Stack

You may find it similar to XML-based XMPP, binary COM/CORBA,
JSON-based WAMP, Apache Camel or Microsoft WCF communication
foundations. We took best from all and put into one protocols stack
for web, social and enterprise domains providing stable and mature
implementation for Erlang in a form of N2O application server.

30

Cross Language Compatibility

N2O application server implemented to support N2O protocol defini-
tion in Erlang which is widely used in enterprise applications. Exper-
imental implementation in Haskell n2o.hs exists which supports only
core heart protocol along with bert formatter. We will show you how
N2O clients are compatible across different server implementations in
different languages.

Web Protocols: nitro, spa, bin

N2O protocols stack provides definition for several unoverlapped
protocol layers. N2O application server implementation of N2O
protocol specification supports four protocol layers from this stack for
WebSocket and IoT applications: heart, nitro, spa and bin protocols.
HEART protocol is designed for reliable managed connections and
stream channel initialization. The domain of NITRO protocol is
HTML5 client/server interoperability, HTML events and JavaScript
delivery. SPA protocol dedicated for games and static page applica-
tions that involves no HTML, such as SVG based games or non-gui IoT
applications. And finally binary file transfer protocol for images and
gigabyte file uploads and downloads. All these protocols transfers
coexist in the same multi-channel stream.

Social Protocols: roster, muc, search

For social connectivity one may need to use synrc/roster instant
messaging server that supports roster protocol with variation for
enabling public rooms muc or full-text search facilities.

Enterprise Protocols: bpe, mq, rest

There is no single system shipped to support all of N2O protocols
but it could exist theoretically. For other protocols implementation
you may refer to other products like spawnproc/bpe, synrc/rest or
synrc/mq.

31

Channel Termination Formatters

N2O protocol is formatter agnostic and it doesn’t strict you to use
a particular encoder/decoder. Application developers could choose
their own formatter per protocol.

1. BERT : {io,"fire();",1}
2. WAMP : [io,"fire();",1]
3. JSON : {name:io,eval:"fire();",data:1}
4. TEXT : IO \xFF fire(); \xFF 1\n
5. XML : <io><eval>fire();</eval><data>1</data></io>

E.g. N2O uses TEXT formatting for “PING” and “N2O,” protocol mes-
sages, across versions N2O used to have IO message formatted with
JSON and BERT both. All other protocol messages were BERT from
origin. Make sure formatters set for client and server is compatible.

#cx{formatter=bert}.

Note that you may include to support more that one protocol on the
client. At server side you can change formatter on the fly without
breaking the channel stream. Each message during data stream could
be formatted using only one protocol at a time. If you want to pass
each message through more that one formatter you should write an
echo protocol.

<script src=’/n2o/protocols/bert.js’></script>
<script src=’/n2o/protocols/client.js’></script>
<script>protos = [$bert, $client]; N2O_start();</script>

32

Protocol Loop

After message arrives to endpoint and handlers chain is being initial-
izes, message then comes to protocol stack. N2O selects appropriative
protocol module and handle the message. After than message is being
formatted and replied back to stream channel. Note that protocol loop
is applicable only to WebSocket stream channel endpoint.

Figure 4: Messaging Pipeline

Here is pseudocode how message travels for each protocol until
some of them handle the message. Note tnat this logic is subject to
change.

reply(M,R,S) -> {reply,M,R,S}.
nop(R,S) -> {reply,<<>>,R,S}.
push(_,R,S,[],_Acc) -> nop(R,S);
push(M,R,S,[H|T],Acc) ->

case H:info(M,R,S) of
{unknown,_,_,_} -> push(M,R,S,T,Acc);
{reply,M1,R1,S1} -> reply(M1,R1,S1);

A -> push(M,R,S,T,[A|Acc]) end.

Listing 7: Top-level protocol loop in n2o proto

33

Enabling Protocols

You may set up protocol from sys.config file, enabling or disabling
some of them on the fly.

protocols() ->
wf:config(n2o,protocols,[n2o_heart,

n2o_nitrogen,
n2o_client,
n2o_file]).

For example in Skyline (DSL) application you use only nitro protocol:

> wf:config(n2o,protocols).
[n2o_heart,n2o_nitrogen]

And in Games (SPA) application you need only spa protocol:

> wf:config(n2o,protocols).
[n2o_heart,n2o_client]

34

6.1 HEART

HEART protocol is essential WebSocket application level protocol
for PING and N2O initialization. It pings every 4-5 seconds from
client-side to server thus allowing to determine client online presence.
On reconnection or initial connect client sends N2O init marker telling
to server to reinitialize the context.

The heart protocol defined client originated messages N2O, PING
and server originated messages PONG, IO and NOP. IO message
contains EVAL that contains UTF-8 JavaScript string and DATA reply
contains any binary string, including BERT encoded data. ”PING”
and ”N2O,” are defined as text 4-bytes messages and second could
be followed by any text string. NOP is 0-byte acknowledging packet.
This is heart essence protocol which is enough for any rpc and code
transferring interface. Normally heart protocol is not for active client
usage but for supporting active connection with notifications and
possibly DOM updates.

Session Initialization

After page load you should start N2O session in JavaScript with
configured formatters and starting function that will start message
loop on the client:

var transition = {pid: ’’, host: ’localhost’, port:’8000’};
protos = [$bert, $client];
N2O_start();

If pid field is not set in transition variable then you will request
new session otherwise you may put here information from previously
settled cookies for attaching to existing session. This pid disregarding
set or empty will be bypassed as a parameter to N2O init marker.
You can manually invoke session initialization inside existing session:

ws.send(’N2O,’);

35

In response on successful WebSocket connection and enabled heart
protocol on the server you will receive the IO message event. IO
events are containers for function and data which can be used as
parameters. There is no predefined semantic to IO message. Second
element of a tuple will be directly evaluated in WebBrowser. Third
element can contain data or error as for SPA and BIN protocols,
and can contain only error for NITRO protocol. IO events are
not constructed on client. N2O request returns IO messages with
evaluation string and empty data or empty evaluation string with
error in data field.

issue TEXT N2O expect IO
N2O is TEXT "N2O," ++ PID
PID is TEXT "" or any
IO is BERT {io,<<>>,Error}

or {io,Eval,<<>>}

Online Presence

ws.send(’PING’);

You can try manually send this messag in web console to see whats
happening, also you can enable logging the heartbeat protocol by
including its module in log modules:

log_modules() -> [n2o_heart].

Heartbeat protocol PING request returns PONG or empty NOP binary
response.

issue TEXT PING expect PONG
PONG is TEXT "PONG" or ""

36

6.2 NITRO

NITRO protocol consist of three protocol messages: pickle, flush
and direct. Pickled messages are used if you send messages over
unencrypted channel and want to hide the content of the message, that
was generated on server. You can use BASE64 pickling mechanisms
with optional AES/RIPEMD160 encrypting. NITRO messages on
success alway return empty data field in IO message and error
otherwise. Here is definition to NITRO protocol in expect language:

issue BERT PICKLE expect IO
issue BERT DIRECT expect IO
issue BERT FLUSH expect IO

PICKLE is BERT {pickle,_,_,_,_}
DIRECT is BERT {direct,_}
FLUSH is BERT {flush,_}

Usually pickle events are being sent generated from server during
rendering of nitro elements. To see how it looks like you can see inside
IO messages returned from N2O initialization. There you can find
something like this:

ws.send(enc(tuple(atom(’pickle’),
bin(’loginButton’),
bin(’g2gCaAVkAAJldmQABGF1dGhkAAVsb2dpbmsAC2xvZ2lu’

’QnV0dG9uZAAFZXZlbnRoA2IAAAWiYgAA72ViAA8kIQ==’),
[tuple(tuple(utf8_toByteArray(’loginButton’),

bin(’detail’)),[]),
tuple(atom(’user’),querySource(’user’)),
tuple(atom(’pass’),querySource(’pass’))])));

Invocation of pickle messages is binded to DOM elements using
source and postback information from nitro elements.

#button { id=loginButton,
body="Login",
postback=login,
source=[user,pass] }].

37

Only fields listed in source will be included in pickle message on in-
vocation. Information about module and event arguments (postback)
is sent encrypted or pickled. So it would be hard to know the internal
structure of server codebase for potential hacker. On the server you
will recieve following structure:

{pickle,<<"loginButton">>,
<<"g2gCaAVkAAJldmQABGF1dGhkAAVsb2dpbmsAC2xvZ2lu"

"QnV0dG9uZAAFZXZlbnRoA2IAAAWiYgAA72ViAA8kIQ==">>,
[{{"loginButton",<<"detail">>},[]},
{user,[]},
{pass,"z"}]}

You can depickle #ev event with wf:depickle API:

> wf:depickle(<<"g1AAAAA6eJzLYMpgTWFgSi1LYWDNyU/PzIPR2Qh+"
"allqXkkGcxIDA+siIHEvKomB5cBKAN+JEQ4=">>).

#ev { module = Module = auth,
msg = Message = login,
name = event,
trigger = "loginButton" }

Information for #ev event is directly passed to page module as
Module:event(Message) . Information from sources user and pass
could be retrieved with wf:q API:

-module(auth).
-compile(export_all).

event(login) ->
io:format(lists:concat([":user:",wf:q(user),

":pass:",wf:q(pass)])).

This is Nitrogen-based messaging model. Nitrogen WebSocket pro-
cesses receive also flush and delivery protocol messages, but origi-
nated from server, which is internal NITRO protocol messages. All
client requests originate IO message as a response.

38

6.3 SPA

If you are creating SVG based game you don’t need HTML5 nitro
elements at all. Instead you need simple and clean JavaScript based
protocol for updating DOM SVG elements but based on shen gen-
erated or manual JavaScript code sent from server. Thus you need
still IO messages as a reply but originating message shouldn’t rely in
nitro at all. For that purposes in general and for synrc/games sample
in particular we created SPA protocol layer. SPA protocol consist
of CLIENT originated message and SERVER message that could be
originated both from client and server. All messages expects IO as a
response. In IO response data field is always set with return value
of the event while eval field is set with rendered actions as in NITRO
protocol.

issue BERT CLIENT expect IO
issue BERT SERVER expect IO

SERVER is BERT {server,_}
CLIENT is BERT {client,_}

Client messages usually originated at client and represent the Client
API Requests:

ws.send(enc(tuple(
atom(’client’),
tuple(atom(’join_game’),1000001))));

Server messages are usually being sent to client originated on the
server by sending info notifications directly to Web Socket process:

> WebSocketPid ! {server, Message}

You can obtain this Pid during page init:

event(init) -> io:format("Pid: ˜p",[self()]);

You can also send server messages from client relays and vice versa.
It is up to your application and client/server handlers how to handle
such messages.

39

6.4 BIN

When you need raw binary Blob on client-side, for images or other
raw data, you can ask server like this:

> ws.send(enc(tuple(atom(’bin’),bin(’request’))));

Ensure you have defined #bin handler and page you are asking is
visible by router:

event(#bin{data=Data}) ->
wf:info(?MODULE,"Binary Delivered ˜p˜n",[Data]),
#bin{data = "SERVER v1"};

Having enabled all loggin in module n2o file, index and wf convert
you will see:

n2o_file:BIN Message: {bin,<<"request">>}
index:Binary Delivered <<"request">>
wf_convert:BERT {bin,_}: "SERVER v1"

In JavaScript when you enable ‘debug=true‘ you can see:

> {"t":104,"v":[{"t":100,"v":"bin"},
{"t":107,"v":"SERVER v1"}]}

Or by adding handling for BIN protocol:

> $file.do = function (x)
{ console.log(’BIN received: ’ + x.v[1].v); }

> ws.send(enc(tuple(atom(’bin’),bin(’request’))));
> BIN received: SERVER v1

The formal description of BIN is simple relay:

issue BERT {bin,_} expect {bin,_}

40

7 API

7.1 Update DOM wf:update

You can update part of the page or DOM element with a given element
or even raw HTML. N2O comes with NITRO template engine based
on Erlang records syntax and optimized to be as fast as DTL or EEX
template engines. You may use them with #dtl and #eex template
NITRO elements. N2O Review application provides a sample how
to use DTL templates. For using Nitrogen like DSL first you should
include nitro application to your rebar.config

{nitro,".*",{git,"git://github.com/synrc/nitro",{tag,"2.9"}}},

And also plug it in headers to your erlang page module:

-include("nitro/include/nitro.hrl").

Here is an example of simple #span NITRO element with an HTML
counterpart.

wf:update(history,[#span{body="Hello"}]).

It generates DOM update script and sends it to WebSocket channel for
evaluation:

document.querySelector(’#history’)
.outerHTML = ’Hello’;

Companions are also provided for updating head and tail of the
elements list: wf:insert top/2 and wf:insert bottom/2. These are
translated to appropriate JavaScript methods insertBefore and ap-
pendChild during rendering.

41

wf:insert_top(history,
#panel{id=banner, body= [

#span{ id=text,
body = wf:f("User ˜s logged in.",[wf:user()]) },

#button{id=logout, body="Logout", postback=logout },
#br{}]}),

Remember to envelop all elements in common root element before
inserts.

For relative updates use wf:insert before/2 and wf:insert after/2.
To remove an element use wf:remove/2.

Element Naming You can specify element’s id with Erlang atoms,
lists or binaries. During rendering the value will be converted with
wf:to list. Conversion will be consistent only if you use atoms. Oth-
erwise you need to care about illegal symbols for element accessors.

During page updates you can create additional elements with
runtime generated event handlers, perform HTML rendering for
template elements or even use distributed map/reduce to calculate
view. You have to be aware that heavy operations will consume more
power in the browser, but you can save it by rendering HTML on
server-side. All DOM updates API works both using JavaScript/OTP
and server pages.

List of elements you can use is given in Chapter 9. You can also
create your own elements with a custom render function. If you want
to see how custom element are being implemented you may refer to
synrc/extra packages where some useful controls may be found like
file uploader, calendar, autocompletion textboxlist and HTML editor.

42

7.2 Wire JavaScript wf:wire

Just like HTML is generated from Elements, Actions are rendered into
JavaScript to handle events raised in the browser. Actions are always
transformed into JavaScript and sent through WebSockets pipe.

Direct Wiring

There are two types of actions. First class are direct JavaScript strings
provided directly as Erlang lists or via JavaScript/OTP transforma-
tions.

wf:wire("window.location=’http://synrc.com’").

Actions Render

Second class actions are in fact Erlang records rendered during page
load, server events or client events.

wf:wire(#alert{text="Hello!"}).

However basic N2O actions that are part of N2O API, wf:update
and wf:redirect, are implemented as Erlang records as given in
the example. If you need deferred rendering of JavaScript, you
can use Erlang records instead of direct wiring with Erlang lists or
JavaScript/OTP.

Any action, wired with wf:wire, is enveloped in #wire{actions=[]},
which is also an action capable of polymorphic rendering of custom
or built-in actions, specified in the list. Following nested action
embedding is also valid:

wf:wire(#wire{actions=[#alert{text="N2O"}]}).

You may try to see how internally wiring is working:

43

> wf:actions().
[]

> wf:wire(#alert{text="N2O"}).
[#wire{ancestor = action,trigger = undefined,

target = undefined,module = action_wire,
actions = #alert{ancestor = action,

trigger = undefined,
target = undefined,
module = action_alert,
actions = undefined,
source = [], text = "N2O"},

source = []}]

> iolist_to_binary(wf:render(wf:actions())).
<<"alert(\"N2O\");">>

Consider wiring #event if you want to add listener to existed element
on page:

> wf:wire(#event{target=btn,postback=evt,type=click}),
[]

> rp(iolist_to_binary(wf:render(wf:actions()))).
<<"{var x=qi(’element_id’); x && x.addEventListener(’cl
ick’,function (event){{ if (validateSources([])) ws.sen
d(enc(tuple(atom(’pickle’),bin(’element_id’),bin(’g2gCa
AVkAAJldmQABWluZGV4ZAADZXZ0awAKZWxlbWVudF9pZGQABWV2ZW50
aANiAAAFoWIAB8kuYgAOvJA=’),[tuple(tuple(utf8_toByteArra
y(’element_id’),bin(’detail’)),event.detail)])));else c
onsole.log(’Validation Error’); }});};">>

44

7.3 Message Bus wf:reg and wf:send

N2O uses gproc process registry for managing async processes pools.
It is used as a PubSub message bus for N2O communications. You can
associate a process with the pool with wf:reg and send a message to
the pool with wf:send.

loop() ->
receive M ->

wf:info(?MODULE, "P: ˜p, M: ˜p",[self(),M]) end, loop().

Now you can test it

> spawn(fun() -> wf:reg(topic), loop() end).
> spawn(fun() -> wf:reg(topic), loop() end).
> wf:send(topic,"Hello").

It should print in REPL something like:

> [info] P: <0.2012.0>, M: "Hello"
> [info] P: <0.2015.0>, M: "Hello"

Custom Registrator You may want to replace built-in gproc based
PubSub registrator with something more robust like MQTT and
AMQP or something more internal like pg2. All you need is to
implement following API:

-module(mqtt_mq).
-compile(export_all).

send(Topic, Message) -> mqtt:publish(Topic, Message).
reg(Topic) -> mqtt:subscribe(Topic, Message).
reg(Topic,Tag) -> mqtt:subscribe(Topic, Tag, Message).
unreg(Topic) -> mqtt:unsubscribe(Topic).

And set it in runtime:

> application:set_env(n2o,mq,mqtt_mq).

45

7.4 Async Processes wf:async and wf:flush

Function wf:async/2 creates Erlang process, which communicate with
the primary page process by sending messages. wf:flush/0 should be
called to redirect all updates and wire actions back to the page process
from its async counterpart. But function wf:flush/1 has completly
another meaning, it uses pubsub to deliver a rendered actions in
async worker to any process, previously registered with wf:reg/1, by
its topic. Usually you send messages to async processes over N2O
message bus wf:send/2 which is similar to how wf:flush/1 works.
But you can use also n2o async:send/2 selectively to async worker
what reminds wf:flush/0. In following example different variants are
gives, both incrementing counter by 2. Also notice the async process
initialization through init message. It is not nessesary to include init
clause to async looper.

body() -> [#span { id=display, body="0"},
#button { id=send, body="Inc",

postback=inc}].

event(init) -> wf:async("counter",fun loop/1);
event(inc) -> wf:send(counter,up),

n2o_async:send("counter",up).

loop(init) -> wf:reg(counter), put(counter,0);
loop(up) -> C = get(counter) + 1,

put(counter,C),
wf:update(display,

#span{id=display,body=wf:to_binary(C)}),
wf:flush().

Process Naming The name of async process is globally unique.
There are two versions, wf:async/1 and wf:async/2. In the given ex-
ample the name of async process is specified as “counter”, otherwise,
if the first parameter was not specified, the default name “looper” will
be used. Internally each async process includes custom key which is
settled by default to session id.

46

So let’s mimic session id and #cx in the shell:

> put(session_id,<<"d43adcc79dd64393a1eb559227a2d3fd">>).
undefined

> wf:context(wf:init_context(undefined)).
{cx,[{query,n2o_query},

{session,n2o_session},
{route,routes}],
[],[],index,undefined,[],
undefined,[],undefined,[]}

> wf:async("ho!",
fun(X) -> io:format("Received: ˜p˜n",[X]) end).

index:Received: init
{<0.507.0>,{async,

{"ho!",<<"d43adcc79dd64393a1eb559227a2d3fd">>}}}

> supervisor:which_children(n2o_sup).
[{{async,

{"counter",<<"d43adcc79dd64393a1eb559227a2d3fd">>}},
<0.11564.0>,worker,
[n2o_async]}]

Async workers suppors both sync and async messages, you may use
gen server for calling by pid, n2o async for named or even built-in
erlang way of sending messages. All types of handlilng like info, cast
and call are supported.

> pid(0,507,0) ! "hey".
Received: "hey"
ok

> n2o_async:send("ho!","hola").
Received: "hola"
ok

> gen_server:call(pid(0,507,0),"sync").
Received: "sync"
ok

47

7.5 Parse URL and Context parameters wf:q and wf:qp

These are used to extract URL parameters or read from the process
context. wf:q extracts variables from the context stored by controls
postbacks. wf:qp extracts variables from URL params provieded by
cowboy bridge. wf:qc extracts variables from #cx.params context
parsed with custom query handler during endpoint initialization
usually performed inside N2O with something like.

Ctx = wf:init_context(Req),
NewCtx = wf:fold(init,Ctx#cx.handlers,Ctx),
wf:context(NewCtx),

48

7.6 Render wf:render or nitro:render

Render elements or actions with common render. Rendering is
usually done automatically inside N2O, when you use DOM or Wiring
API, but sometime you may need manual render, e.g. in static site
generators and other NITRO applications which couldn’t be even
dependent from N2O. For that purposes you may use NITRO API

> nitro:render(#button{id=id,postback=signal}).
<<"<button id=\"id\" type=\"button\"></button>">>

This is simple sample you may use in static site generators, but in
N2O context you also may need to manual render JavaScript actions
produced during HTML rendering. First of all you should know that
process in which you want to render should be initialized with N2O
#cx context. Here is example of JavaScript produced during previous
#button rendering:

> wf:context(wf:init_context([])).
undefined

> rp(iolist_to_binary(nitro:render(wf:actions()))).
<<"{var x=qi(’id’); x && x.addEventListener(’click’,
function (event){{ if (validateSources([])) ws.send(
enc(tuple(atom(’pickle’),bin(’id’),bin(’g2gCaAVkAAJl
dmQABWluZGV4ZAAGc2lnbmFsawACaWRkAAVldmVudGgDYgAABaFi
AAbo0GIACnB4’),[tuple(tuple(utf8_toByteArray(’id’),b
in(’detail’)),event.detail)])));else console.log(’Va
lidation Error’); }});};">>

49

Here is another more complex example of menu rendering using
NITRO DSL:

menu(Files,Author) ->
#panel{id=navcontainer,body=[#ul{id=nav,body=[

#li{body=[#link{href="#",body="Navigation"},#ul{body=[
#li{body=#link{href="/1.htm",body="Root"}},
#li{body=#link{href="../1.htm",body="Parent"}},
#li{body=#link{href="1.htm",body="This"}}]}]},

#li{body=[#link{href="#",body="Download"},#ul{body=[
#li{body=#link{href=F,body=F}}|| F <- Files] }]},

#li{body=[#link{href="#",body="Translations"},#ul{body=[
#li{body=#link{href="#",body=Author}}]}]}]}]}.

> rp(iolist_to_binary(wf:render(menu(["1","2"],"5HT")))).
<<"<div id=\"navcontainer\"><ul id=\"nav\">
Navigation<a href=\"/
1.htm\">RootP
arentThis</l
i>Download<
li>12<
/a>Translation
s5HT</l
i></div>">>

Also notice some helpful functions to preprocess HTML and JavaScript
escaping to avois XSS attacks:

> wf:html_encode(wf:js_escape("alert(’N2O’);")).
"alert(\\'N2O\\');"

50

7.7 Redirects wf:redirect

Redirects are implemented not with HTTP headers, but with JavaScript
action modifying window.location. This saves login context informa-
tion which is sent in the first packet upon establishing a WebSocket
connection.

7.8 Session Information wf:session

Store any session information in ETS tables. Use wf:user, wf:role for
login and authorization. Consult AVZ library documentation.

51

7.9 Bridge information wf:header and wf:cookie

You can read and issue cookie and headers information using internal
Web-Server routines. You can also read peer IP with wf:peer. Usually
you do Bridge operations inside handlers or endpoints.

wf:cookies_req(?REQ),
wf:cookie_req(Name,Value,Path,TTL,Req)

You can set cookies for the page using public cookies API during initial
page rendering.

body() -> wf:cookie("user","Joe"), [].

You should use wiring inside WebSocket events:

event(_) ->
wf:wire(wf:f("document.cookie=’˜s=˜s’",["user","Joe"])).

52

8 Elements

With N2O you don’t need to use HTML at all. Instead you define
your page in the form of Erlang records so that the page is type
checked at the compile time. This is a classic CGI approach for
compiled pages and it gives us all the benefits of compile time error
checking and provides DSL for client and server-side rendering.

Nitrogen elements, by their nature, are UI control primitives that
can be used to construct Nitrogen pages with Erlang internal DSL.
They are compiled into HTML and JavaScript. Behavior of all el-
ements is controlled on server-side and all the communication be-
tween browser and server-side is performed over WebSocket chan-
nels. Hence there is no need to use POST requests or HTML forms.

8.1 Static Elements: HTML

The core set of HTML elements includes br, headings, links, tables,
lists and image tags. Static elements are transformed into HTML
during rendering.

Static elements could also be used as placeholders for other HTML
elements. Usually “static” means elements that don’t use postback
parameter:

#textbox { id=userName, body= <<"Anonymous">> },
#panel { id=chatHistory, class=chat_history }

This will produce the following HTML code:

<input value="Anonymous" id="userName" type="text"/>
<div id="chatHistory" class="chat_history"></div>

53

8.2 Active Elements: HTML and JavaScript

There are form elements that provide information for the server and
gather user input: button, radio and check buttons, text box area
and password box. Form elements usually allow to assign an Erlang
postback handler to specify action behavior. These elements are
compiled into HTML and JavaScript. For example, during rendering,
some Actions are converted to JavaScript and sent to be executed in
the browser. Element definition specifies the list of source elements
that provide data for event’s callback.

{ok,Pid} = wf:async(fun() -> chat_loop() end),
#button { id=sendButton, body= <<"Send">>,

postback={chat,Pid}, source=[userName,message] }.

This will produce the following HTML:

<input value="Chat" id="sendButton" type="button"/>

and JavaScript code:

$(’#sendButton’).bind(’click’,function anonymous(event) {
ws.send(Bert.encodebuf({

source: Bert.binary(’sendButton’),
pickle: Bert.binary(’g1AAAINQAAAAdX...’),
linked: [

Bert.tuple(Bert.atom(’userName’),
utf8.toByteArray($(’#userName’).val())),
Bert.tuple(Bert.atom(’message’),
utf8.toByteArray($(’#message’).val()))] })); });

If postback action is specified then the page module must include a
callback to handle postback info:

event({chat,Pid}) ->
wf:info(?MODULE, "User ˜p Msg ˜p",

[wf:q(userName),wf:q(message)]).

54

8.3 Base Element

Each HTML element in N2O DSL has record compatibility with the
base element.

#element { ancestor=element,
module,
id,
actions,
class=[],
style=[],
source=[],
data_fields=[],
aria_states=[],
body,
role,
tabindex,
show_if=true,
html_tag=Tag,
title }.

Here module is an Erlang module that contains a render function.
Data and Aria HTML custom fields are common attributes for all
elements. In case element name doesn’t correspond to HTML tag,
html tag field provided. body field is used as element contents for
all elements.

Most HTML elements are defined as basic elements. You can even
choose element’s name different from its original HTML tag name:

-record(h6, ?DEFAULT_BASE).
-record(tbody, ?DEFAULT_BASE).
-record(panel, ?DEFAULT_BASE_TAG(<<"div">>)).
-record(’div’, ?DEFAULT_BASE_TAG(<<"div">>)).

55

8.4 DTL Template #dtl

DTL stands for Django Template Language. A DTL element lets to
construct HTML snippet from template with given placeholders for
further substitution. Fields contain substitution bindings proplist,
filename and templates folder.

-record(dtl, {?ELEMENT_BASE(element_dtl),
file="index",
bindings=[],
app=web,
folder="priv/templates",
ext="html",
bind_script=true }).

Consider we have prod.dtl file in priv/templates folder with two
placeholders {{title}}, {{body}} and default placeholder for JavaScript
{{script}}. All placeholders except {{script}} should be specified in
#dtl element. Here is an example of how to use it:

body() -> "HTML Body".
main() ->

[#dtl { file="prod", ext="dtl",
bindings=[{title,<<"Title">>},{body,body()}]}].

You can use templates not only for pages, but for controls as well. Let’s
say we want to use DTL iterators for constructing list elements:

{% for i in items %} {{i.name}}

{% empty %} No items available :-(
{% endfor %}

Listing 8: table.html

Here is an example of how to pass variables to the DTL template we’ve
just defined:

56

#dtl{file="table", bind_script=false, bindings=[{items,
[{[{name, "Apple"}, {url, "http://apple.com"}]},

{[{name, "Google"}, {url, "http://google.com"}]},
{[{name, "Microsoft"}, {url, "http://microsoft.com"}]}]}]}.

bind script should be set to true for page templates. When control
elements are rendered from DTL, bind script should be set to false.

8.5 Button #button

-record(button, {?ELEMENT_BASE(element_button),
type= <<"button">>,
name,
value,
postback,
delegate,
disabled}).

Sample:

#button { id=sendButton, body= <<"Send">>,
postback={chat,Pid}, source=[userName,message] }.

8.6 Link #dropdown

-record(dropdown, {?ELEMENT_BASE(element_dropdown),
options,
postback,
delegate,
value,
multiple=false,
disabled=false,
name}).

-record(option, {?ELEMENT_BASE(element_select),
label,
value,
selected=false,
disabled}).

57

Sample:

#dropdown { id=drop,
value="2",
postback=combo,
source=[drop], options=[

#option { label= <<"Microsoft">>, value= <<"Windows">> },
#option { label= <<"Google">>, value= <<"Android">> },
#option { label= <<"Apple">>, value= <<"Mac">> }

]},

58

8.7 Link #link

-record(link, {?ELEMENT_BASE(element_link),
target,
url="javascript:void(0);",
postback,
delegate,
name}).

8.8 Text Editor #textarea

-record(textarea, {?ELEMENT_BASE(element_textarea),
placeholder,
name,
cols,
rows,
value}).

59

9 Actions

#action is the basic record for all actions. It means that each action
has #action as its ancestor.

#action { ancestor,
target,
module,
actions,
source=[] }.

target specifies an element where this action will arise.

9.1 JavaScript DSL #jq

JavaScript query selector action mimics JavaScript calls and assign-
ments. Specific action may be performed depending on fillingproperty
or method fields.

-record(jq, {?ACTION_BASE(action_jq),
property,
method,
args=[],
right }).

Here is an example of method calls:

wf:wire(#jq{target=n2ostatus,method=[show,select]}).

unfolded to calls:

document.querySelector(’#n2ostatus’).show();
document.querySelector(’#n2ostatus’).select();

And here is example of property chained assignments:

wf:wire(#jq{target=history,property=scrollTop,
right=#jq{target=history,property=scrollHeight}}).

which transforms to:

60

document.querySelector(’#history’).scrollTop =
document.querySelector(’#history’).scrollHeight;

Part of N2O API is implemented using #jq actions (updates and
redirect). This action is introduced as transitional in order to move
from Nitrogen DSL to using pure JavaScript transformations.

Event Actions

Objects passed over WebSockets channel from server to client are
called actions. Objects passed over the same channel from client to
server are called events. However events themselves are bound to
HTML elements with addEventListener and in order to perform these
bindings, actions should be sent first. Such actions are called event
actions. There are three types of event actions.

9.2 Page Events #event

Page events are regular events routed to the calling module. Postback
field is used as the main routing argument for event module function.
By providing source elements list you specify HTML controls values
sent to the server and accessed with wf:q accessor from the page
context. Page events are normally generated by active elements
like #button, #link, #textbox, #dropdown, #select, #radio and others
elements contain postback field.

Control events are used to solve the need of element writers. When
you develop your own control elements, you usually want events to
be routed not to page but to element module. Control events were
introduced for this purpose.

9.3 API Events #api

When you need to call Erlang function from JavaScript directly you
should use API events. API events are routed to page module with
api event/3 function. API events were used in AVZ authorization

61

library. Here is an example of how JSON login could be implemented
using api event:

api_event(appLogin, Args, Term) ->
Struct = n2o_json:decode(Args),
wf:info(?MODULE, "Granted Access"),
wf:redirect("/account").

And from JavaScript you call it like this:

document.appLogin(JSON.stringify(response));

All API events are bound to root of the HTML document.

9.4 Message Box #alert

Message box alert is a very simple dialog that could be used for client
debugging. You can use console.log along with alerts.

event({debug,Var}) ->
wf:wire(#alert{text="Debug: " ++ wf:to_list(Var)}),

9.5 Confirmation Box #confirm

You can use confirmation boxes for simple approval with JavaScript
confirm dialogs. You should extend this action in order to build
custom dialogs. Confirmation box is just an example of how to
organize this type of logic.

event(confirm) ->
wf:wire(#confirm{text="Are you happy?",postback=continue}),

event(continue) -> wf:info(?MODULE, "Yes, you’re right!", []);

62

10 JavaScript Compiler

10.1 Compilation and Macros

Erlang JavaScript/OTP Parse Transform has two modes defined by
jsmacro and js Erlang module attributes. The first mode precompiles
Erlang module functions into JavaScript strings. The second one
exports Erlang functions into a separate JavaScript file ready to run
in the browser or Node.js.

Sample usage of jsmacro and js:

-module(sample).
-compile({parse_transform, shen}).
-jsmacro([tabshow/0,doc_ready/1,event/3]).
-js(doc_ready/1).

10.2 Erlang Macro Functions

Macro functions are useful for using N2O as a server-side framework.
Functions get rewritten during Erlang compilation into a JavaScript
format string ready for embedding. Here is an example from N2O
pages:

tabshow() ->
X = jq("a[data-toggle=tab]"),
X:on("show",

fun(E) -> T = jq(E:at("target")),
tabshow(T:attr("href")) end).

doc_ready(E) ->
D = jq(document),
D:ready(fun() ->

T = jq("a[href=\"#" ++ E ++ "\"]"),
T:tab("show") end).

event(A,B,C) ->
ws:send(’Bert’:encodebuf(

[{source,’Bert’:binary(A)}, {x,C},
{pickle,’Bert’:binary(B)}, {linked,C}])).

main() ->

63

Script1 = tabshow(),
Script2 = event(1, 2, 3),
Script3 = doc_ready(wf:js_list("tab")),
io:format("tabshow/0:˜n˜s˜nevent/3:˜n˜s˜ndoc_ready/1:˜n˜s˜n",

[Script1,Script2,Script3]).

Perform compilation and run tests:

$ erlc sample.erl
$ erl
> sample:main().

You’ll get the following output:

tabshow/0:
var x = $(’a[data-toggle=tab]’);
x.on(’show’,function(e) {

var t = $(e[’target’]);
return tabshow(t.attr(’href’));

});

event/3:
ws.send(Bert.encodebuf({source:Bert.binary(1),

x:3,
pickle:Bert.binary(2),
linked:3}));

doc_ready/1:
var d = $(document);
d.ready(function() {

var t = $(’a[href="#’ + ’tab’ + ’"]’);
return t.tab(’show’);

});

As you see, no source-map needed.

10.3 JavaScript File Compilation

Export Erlang function to JavaScript file with -js([sample/0,fun -
args/2]). You could include functions for both macro and js defini-
tions.

64

10.4 Mapping Erlang/OTP to JavaScript/OTP

Following OTP libraries are partially supported in Erlang JavaScript
Parse Transform: lists, proplists, queue, string.

Example 1

S = lists:map(fun(X) -> X * X end,[1,2,3,4]),

transforms to:

s = [1,2,3,4].map(function(x) {
return x * x;

});

Example 2

M = lists:foldl(fun(X, Acc) -> Acc + X end,0,[1,2,3,4]),

transforms to:

m = [1,2,3,4].reduce(function(x,acc) {
return acc + x;

},0);

65

11 UTF-8

11.1 Erlang

The main thing you should know about Erlang unicode is that

unicode:characters_to_binary("Uni") == <<"Uni"/utf8>>.

I.e. in N2O DSL you should use:

#button{body= <<"Unicode Name"/utf8>>}

11.2 JavaScript

Whenever you want to send to server the value from DOM element
you should use utf8 toByteArray.

> utf8_toByteArray(document.getElementById(’phone’).value);

However we created shortcut for that purposes which knows about
radio, fieldset and other types of DOM nodes. So you should use just:

> querySource(’phone’);

querySource JavaScript function ships in nitrogen.js which is part of
N2O JavaScript library.

Whenever you get unicode data from server you should prepare it
before place in DOM with utf8 dec:

> console.log(utf8_dec(receivedMessage));

66

12 MAD: Build and Packaging Tool

12.1 History

We came to conclusion that no matter how perfect your libraries
are, the comfort and ease come mostly from development tools.
Everything got started when Vladimir Kirillov3 decided to replace
Rusty’s sync beam reloader. As you know sync uses filesystem polling
which is neither energy-efficient nor elegant. Also sync is only able
to recompile separate modules, while common use-case in N2O is to
recompile DTL templates and LESS/SCSS stylesheets. That is why
we need to recompile the whole project. That’s the story how active4

emerged. Under the hood active is a client subscriber of fs5 library,
native filesystem listener for Linux, Windows and Mac.

De-facto standard in Erlang world is rebar. We love rebar interface
despite its implementation. First we plugged rebar into active and
then decided to drop its support, it was slow, especially in cold
recompilation. Rebar was designed to be a stand-alone tool, so it has
some glitches while using as embedded library. Later we switched to
Makefile-based build tool otp.mk6.

The idea to build rebar replacement was up in the air for a long
time. The best minimal approach was picked up by Sina Samavati7,
who implemented the first prototype called ’mad’. Initially mad was
able to compile DTL templates, YECC files, escript (like bundled in
gproc), and it also had support for caching with side-effects.

Cold Hot
rebar get-deps compile 53.156s 4.714s
mad deps compile 54.097s 0.899s

Listing 9: Example of building N2O sample

3https://github.com/proger
4https://github.com/synrc/active
5https://github.com/synrc/fs
6https://github.com/synrc/otp.mk
7https://github.com/s1n4

67

Hot
make (erlang.mk) 2.588s
mad compile 2.521s

Listing 10: Example of building Cowboy

12.2 Introduction

We were trying to make something minimalistic that fits out Web
Stack8. Besides we wanted to use our knowledge of other build tools
like lein, sbt etc. Also for sure we tried sinan, ebt, Makefile-based
scripts.
Synrc mad has a simple interface as follows:

BNF:
invoke := mad params
params := [] | run params

run := command [options]
command := app | lib | deps | compile | bundle

start | stop | repl

It seems to us more natural, you can specify random command sets
with different specifiers (options).

12.3 Single-File Bundling

The key feature of mad is ability to create single-file bundled web
sites. Thus making dream to boot simpler than Node.js come true.
This target escript is ready for run on Windows, Linux and Mac.

To make this possible we implemented a zip filesytem inside escript.
mad packages priv directories along with ebin and configs. You can
redefine each file in zip fs inside target escript by creating the copy
with the same path locally near escript. After launch all files are copied
to ETS. N2O also comes with custom cowboy static handler that is able

8https://github.com/synrc

68

to read static files from this cached ETS filesystem. Also bundles are
compatible with active online realoading and recompilation.

12.4 Templates

mad also comes with N2O templates. So you can bootstrap an
N2O-based site just having a single copy of mad binary.

mad app sample
cd sample
mad deps compile plan bundle sample

After that you can just run escript web app under Windows, Linux
and Mac and open http://localhost:80009.

C:\> escript sample
Applications: [kernel,stdlib,crypto,cowlib,ranch,cowboy,compiler,

syntax_tools,erlydtl,gproc,xmerl,n2o,sample,
fs,active,mad,sh]

Configuration: [{n2o,[{port,8000},{route,routes}]},
{kvs,[{dba,store_mnesia},

{schema,[kvs_user,kvs_acl,kvs_feed,
kvs_subscription]}]}]

Erlang/OTP 17 [erts-6.0] [64-bit] [smp:4:4] [async-threads:10]

Eshell V6.0 (abort with ˆG)
1>

12.5 Deploy

mad is also supposed to be a deploy tool with ability to deploy not
only to our resources like Erlang on Xen, Voxoz (LXC/Xen) but also to
Heroku and others.

9http://localhost:8000

69

12.6 OTP Compliant

mad supports rebar umbrella project structure. Specifically two kinds
of directory layouts:

apps
deps
rebar.config
sys.config

Listing 11: Solution

deps
ebin
include
priv
src
rebar.config

Listing 12: OTP Application

12.7 Apps Ordering

As you may know, you can create OTP releases with reltool (rebar
generate) or systools (relx). mad currently creates releases with relx
but is going to do it independently soon. Now it can only order
applications.

mad plan
Ordered: [kernel,stdlib,mnesia,kvs,crypto,cowlib,ranch,

cowboy,compiler,syntax_tools,erlydtl,gproc,
xmerl,n2o,n2o_sample,fs,active,mad,rest,sh]

And the good part about mad is it’s size:

Sources Binary
mad 567 LOC 39 KB
rebar 7717 LOC 181 KB

70

13 KVS: Abstract Erlang Database

KVS is an Erlang abstraction over various native Erlang key-value
databases, like Mnesia. Its meta-schema includes only concept of
iterators (persisted linked lists) that are locked or guarded by contain-
ers (list head pointers). All write operations to the list are serialized
using a single Erlang process to provide sequential consistency. The
application which starts Erlang processes per container called feeds10.

The best use-case for KVS and key-value storages is to store oper-
ational data. This data should be later fed to SQL data warehouses
for analysis. Operational data stores should be scalable, secure,
fault-tolerant and available. That is why we store work-in-progress
data in key-value storages.

KVS also supports queries that require secondary indexes, which
are not supported by all backends. Currently KVS includes following
storage backends: Mnesia, Riak and KAI11.

13.1 Polymorphic Records

Any data in KVS is represented by regular Erlang records. The first
element of the tuple as usual indicates the name of bucket. The second
element usually corresponds to the index key field.

Rec = {user,"maxim@synrc.com",[]}.

RecordName = element(1, Rec).
Id = element(2, Rec).

10https://github.com/synrc/feeds
11https://github.com/synrc/kai

71

13.2 Iterators

Iterator is a sequence of fields used as interface for all tables repre-
sented as doubly-linked lists. It defines id, next, prev, feed id fields.
This fields should be at the beginning of user’s record, because KVS
core is accessing relative position of the field (like #iterator.next) with
setelement/element BIF, e.g.

setelement(#iterator.next, Record, NewValue).

All records could be chained into the double-linked lists in the
database. So you can inherit from the ITERATOR record just like that:

-record(access, {?ITERATOR(acl),
entry_id,
acl_id,
accessor,
action}).

#iterator { record_name,
id,
version,
container,
feed_id,
prev,
next,
feeds,
guard }

This means your table will support add/remove linked list operations
to lists.

1> kvs:add(#user{id="mes@ua.fm"}).
2> kvs:add(#user{id="dox@ua.fm"}).

Read the chain (undefined means all)
3> kvs:entries(kvs:get(feed, user), user, undefined).
[#user{id="mes@ua.fm"},#user{id="dox@ua.fm"}]

or just
4> kvs:entries(user).
[#user{id="mes@ua.fm"},#user{id="dox@ua.fm"}]

Read flat values by all keys from table:
4> kvs:all(user).
[#user{id="mes@ua.fm"},#user{id="dox@ua.fm"}]

72

13.3 Containers

If you are using iterators records this automatically means you are
using containers. Containers are just boxes for storing top/heads of
the linked lists. Here is layout of containers:

#container { record_name,
id,
top,
entries_count }

13.4 Extending Schema

Usually you only need to specify custom Mnesia indexes and tables
tuning. Riak and KAI backends don’t need it. Group your table into
table packages represented as modules with handle notice API.

-module(kvs_feed).
-inclue_lib("kvs/include/kvs.hrl").

metainfo() ->
#schema{name=kvs,tables=[

#table{ name = feed, container = true,
fields = record_info(fields,feed)},

#table{ name = entry, container = feed,
fields = record_info(fields,entry),
keys = [feed_id,entry_id,from] },

#table{ name = comment, container = feed,
fields = record_info(fields,comment),
keys = [entry_id,author_id] }]}.

And plug it into schema sys.config:

{kvs, {schema,[kvs_user,kvs_acl,kvs_feed,kvs_subscription]}},

After run you can create schema on local node with:

1> kvs:join().

It will create your custom schema.

73

13.5 KVS API

13.6 Service

System functions for start and stop service:

-spec start() -> ok | {error,any()}.
-spec stop() -> stopped.

13.7 Schema Change

This API allows you to create, initialize and destroy the database
schema. Depending on database the format and/or feature set may
differ. join/1 function is used to initialize database, replicated from
remote node along with its schema.

-spec destroy() -> ok.
-spec join() -> ok | {error,any()}.
-spec join(string()) -> [{atom(),any()}].
-spec init(atom(), atom()) -> list(#table{}).

13.8 Meta Info

This API allows you to build forms from table metainfo. You can also
use this API for metainfo introspection.

-spec modules() -> list(atom()).
-spec containers() -> list(tuple(atom(),list(atom()))).
-spec tables() -> list(#table{}).
-spec table(atom()) -> #table{}.
-spec version() -> {version,string()}.

74

13.9 Chain Ops

This API allows you to modify the data, chained lists. You can use
create/1 to create the container. You can add and remove nodes from
lists.

-spec create(atom()) -> integer().
-spec remove(tuple()) -> ok | {error,any()}.
-spec remove(atom(), any()) -> ok | {error,any()}.
-spec add(tuple()) -> {ok,tuple()} |

{error,exist} |
{error,no_container}.

13.10 Raw Ops

These functions will patch the Erlang record inside database.

-spec put(tuple()) -> ok | {error,any()}.
-spec delete(atom(), any()) -> ok | {error,any()}.

13.11 Read Ops

Allows you to read the Value by Key and list records with given
secondary indexes. get/3 API is used to specify default value.

-spec index(atom(), any(), any()) -> list(tuple()).
-spec get(atom(),any(), any()) -> {ok,any()}.
-spec get(atom(), any()) -> {ok,any()} |

{error,duplicated} |
{error,not_found}.

13.12 Import/Export

You can use this API to store all database in a single file when it is
possible. It’s ok for development but not very good for production

75

API.

-spec load_db(string()) -> list(ok | {error,any()}).
-spec save_db(string()) -> ok | {error,any()}.

76

14 History

The N2O was born in 2013 in spring. It’s started as a process of
reimplementation of Nitrogen Web Framework behavior for better
performance and code reducing. The initial version had its own
render core along with pure websocket nature of the IO protocol.

First official release of N2O was made in October 2013 when N2O
was presented as one having AES/CBC pickling, REST transforma-
tions, own TeX handbook and JavaScript compiler. It is also known as
version 0.10.

In this minor release BERT transformations mainly were improved
using parse transform. Was introduced ETS caching. Tiny 50 LOC
Makefile called otp.mk was suggested for easy production deploy-
ment. It’s still best option to deploy applications. It was release 0.11.

In January 2014 release xen hosting in LING VM was initially
introduced. Dependencies start to freezing; asset and deploy options
were improved.

April 2014 release was a giving hand to pure JavaScript SPA appli-
cations. Now pages could be served in nginx behind Erlang cowboy
web server. Initial version of N2O protocol was introduced in this
release. New twitter-format stack trace messages was added for error
reporting. bert.js was rewritten and jQuery was removed in this
release. In 1.4 release was also introduced unified logging schema for
KVS and N2O. And main WebSocket endpoint was totally rewritten
to support N2O protocol.

The release of May 2014 is still supported. In this release new build
tool mad was initially introduced. Version 1.5.

77

August 2014 version 1.8 received new cookie session manager
synchronized with ETS table where all entries zipped with session
keys. Client binary requests was made to exists in bin sub-protocol.
KVS was first added to sample application in this release. Full HTML
elements and attributes were added, which caused the growth of the
nitrogen DSL size to the size of N2O.

September 2014 release was numbered 1.9. New client side protocol
pipeline along with new n2o.js. For mad was issued new dynamic
loader which is able to host working directory inside ETS table and
readable from erlang executable script on Windows, Linux and Mac.
UTF-8 support was optimized in utf8.js. New experimental rails
protocol and crashdump.io logging backend module were added in
version 1.9.

October 2014 version 1.10 was minor again. The only message in
changelog were added: ”nothing special”. The first malfunction bug
which was fixed is the racing which happened during async DOM
bulding. Yes, N2O is faster than browser.

January 2015 version 2.1. Major Release. N2O book from now on
can be purchased in a hardcover print. For business applications val-
idations were introduced. n2o.js, binary.js, nitrogen.js, template.js
were slightly optimized. KJELL color support from now on enabled
in new review sample application. Log level support and several field
and racing fixes in HTML elements.

March 2015 version 2.3. Initial Haskell implentation of N2O server
is introduced. New N2O WebSocket protocol specification for all
stack of synrc and spawnproc applications. New auto-expiring
cookie-based session and cache managers. Revised and more sane
XHR fallback. Automatic language detection from routes in context.
Several element fixes and latest Cowboy 1.0.1.

78

$./mad app sample
Create File: "sample/sys.config"
Create File: "sample/apps/sample/priv/static/synrc.css"
Create File: "sample/apps/sample/src/web_app.erl"
Create File: "sample/apps/rebar.config"
Create File: "sample/apps/sample/rebar.config"
Create File: "sample/apps/sample/src/sample.app.src"
Create File: "sample/apps/sample/src/index.erl"
Create File: "sample/apps/sample/src/web_sup.erl"
Create File: "sample/apps/sample/priv/static/spa/index.htm"
Create File: "sample/rebar.config"
Create File: "sample/apps/sample/priv/templates/index.html"
Create File: "sample/apps/sample/src/routes.erl"
$ cd sample
$ time ./mad dep com pla
...
Ordered: [kernel,stdlib,fs,cowlib,crypto,

compiler,syntax_tools,ranch,gproc,
cowboy,erlydtl,n2o,sample,active,mad,sh]

real 0m41.901s
user 0m17.785s
sys 0m5.108s
$./mad rep
Configuration: [{n2o,[{port,8000},

{route,routes},
{log_modules,web_app}]},

{kvs,[{dba,store_mnesia},
{schema,[kvs_user,

kvs_acl,kvs_feed,
kvs_subscription]}]}]

Applications: [kernel,stdlib,fs,cowlib,crypto,
compiler,syntax_tools,ranch,
gproc,cowboy,erlydtl,n2o,
sample,active,mad,sh]

Erlang/OTP 17 [erts-6.2] [source] [64-bit] [smp:4:4]
[async-threads:10] [hipe] [kernel-poll:false]

Eshell V6.2 (abort with ˆG)
1>

Listing 13: Bootstraping in a minute

79

N2O is fast energy efficient binary protocol for IoT and WebSocket
applications. I hope you will find this retrospective useful in your
discovering of N2O.

80

15 Afterword

Hope you find N2O12, KVS13, and MAD14 stack small and concise,
because it was the main goal during development. We stay with
minimal viable functionality criteria.

N2O is free from unnecessary layers and code calls as much as
possible. At the same time it covers all your needs to build flexible
web messaging relays using rich stack of protocols.

Minimalistic criteria allows you to see the system’s most general
representation, which drives you to describe efficiently. You could be
more productive by focusing on core. Erlang N2O and companion
libraries altogether make your life managing web applications easy
without efforts due to its naturally compact and simple design, and
absence of code bloat.

You can see that parse transform is very useful, especially in JavaScript
protocol generation (SHEN) and REST record-to-proplist generators.
So having quote/unquote in language would be very useful. Fast and
small Erlang Lisp (LOL) is expecting compiler is this field as universal
Lisp-based macro system.

All apps in stack operate on its own DSL records-based language:
N2O — #action/#element; KVS — #iterator/#container. This lan-
guage is accessible directly from Erlang-based languages: Joxa, Elixir,
Erlang, Lol.

We hope that this book will guide you in the wild world of Erlang
web development and you will be enlightened by its minimalistic
power.

12http://synrc.com/apps/n2o
13http://synrc.com/apps/kvs
14http://synrc.com/apps/mad

81

